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Abstract:  We propose a digital approach to quantum memories using a 
single-mode oscillator-cavity model, in which the coupling is shaped in time 
to provide the optimum interface to a time-symmetric input pulse. Our generic 
model is applicable to any linear storage medium ranging from a 
superconducting device to an atomic medium.  
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1. Introduction 

Quantum memories (QM) are key devices both for quantum information and fundamental tests 
of quantum mechanics. A QM will write, store then retrieve a quantum state after an arbitrary 
length of time. QM devices are considered vital for the implementation of quantum networks, 
quantum cryptography and quantum computing. At a more fundamental level, they could enable 
one to generate an entangled quantum state in one device, then test it’s decoherence properties 
in a different location. This would allow one to test the equivalence of the quantum state 
description for more than one physical environment. For example, there are proposals that 
gravitational decoherence may occur beyond the standard model of quantum measurement 
theory [1]. This would be testable with controlled ways to input, store, and then read out pairs of 
entangled quantum states in differing environments, with different separations or masses. 
    Here we propose a QM protocol, in which the quantum state is stored digitally in a 
dynamically switched cavity-oscillator system. In this approach one mode is input, one pulse at 
a time, allowing a single qubit or multilevel quantum digit (qudit) to be stored then retrieved. 
We derive a condition on the time-dependence of the oscillator-cavity coupling required to 
match to any external pulse-shape, including time-symmetric pulses. This contrasts with our 
previous work, in which the coupling was a step function, resulting in non-symmetric pulses 
having different shapes on input and output [2]. Because a QM uses time reversal as the key to 
retrieval, the use of time-symmetric pulses is essential to cascaded logic, where a retrieved 
output state must be re-used as an input state to other logic devices.   
       Digital memory protocols also contrast with proposals and experiments [3-8], in which an 
essentially analog QM is used to store any time-varying input, like an analog tape-recorder. Our 
digital QM  proposal is highly suitable for single qudit quantum information processing, just as 
digital electronic memories are used in electronic computers. An essential feature of our 
treatment is that we show how a smooth, time-symmetric sech-pulse can be stored for times 
longer than the pulse duration, and recalled with high quantum fidelity. Thus, the output pulse 
shape replicates the input pulse. Hence, this type of quantum logic can be cascaded, with 
interchangeable inputs and outputs. Our analysis does not involve a slowly varying envelope 
approximation [9-13]. This allows the use of pulses that can be stored for times much longer 
than the pulse duration. We also analyze the effects of losses and noise in the coupling constant.  
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    The benchmarks for a QM are storage time and input-output fidelity. The memory time 

T must be longer than the duration 
I

T of the input signal: 
I

T T> . Otherwise, the memory is 

more like a phase-shifter than a memory. The final quantum state must also be a close replica of 
the original. In quantitative terms, the mean state overlap [14] between the intended and 

achieved quantum states (the mean fidelity F ) must satisfy 
C

F F> . Here 
C

F  is the best mean 

fidelity obtainable with a classical measure and regenerate strategy [15]. Further to this, an ideal 
QM protocol must enable numerous sequential quantum logic operations to be performed, 
meaning many input-output ''quantum states'', carried on ingoing and outgoing pulse 
waveforms. This means that the output pulse envelope should be identical to that of the input. 
    Our theoretical calculations are carried out with linear oscillator models that are analytically 
soluble. This allows us to calculate pulse shapes that are dynamically matched in time to the 
cavity-oscillator system. This strategy can be combined with a variety of other technologies. 
This opens exciting experimental possibilities, including comparisons of fidelity in QM devices 
with different effective masses, as a fundamental test of decoherence in quantum mechanics. 
    Previous QM experiments were frequently limited by relatively short storage times [16]. 
Other demonstrations focus on retrieval efficiency at very high photon number [17]. However, 
these usually have a very low fidelity, since the fidelity at a fixed efficiency decreases 
exponentially with photon number. As a rule, previous proposals either ignore fidelity, or use 
criteria only applicable to special known states, like coherent or squeezed states [16,18,19]. It is 
more useful to allow for arbitrary input states. Our analysis is not restricted to any class of 
states, except for an upper bound on the input photon number. 

 

   Fig. 1. Proposed dynamical atom-cavity QM. The cavity couples to only one   ingoing and 

outgoing mode, ( )

0
( )in out

u t , and it is the quantum state of this mode that is stored. The pulse 

shape is optimized for efficient writing and reading of the state onto and from the oscillator 
medium inside the cavity. A symmetric pulse shape is used, so the time-reversed output is 
identical to the input. 

      

2. Model 

The quantum information in a temporal mode of the propagating single transverse-mode 

operator field ˆ ( )inA t  is first transferred to an internal cavity mode with operator ˆ( )a t , and then 

written into the oscillator or memory with mode operator ˆ( )b t  up to time 0t = . Subsequently, 

the interaction is turned off or detuned for a controllable storage time T . The interaction is 

switched on again after time T , allowing readout into an outgoing quantum field ˆ ( )outA t  at 

t T>  (Fig. 1). We treat quantum information encoded into single propagating modes that are 

temporally and spatially mode-matched to the memory device [20,21]. Here the relevant input 

and output mode operators are 
( ) ( )* ( )

0 0
ˆˆ ( ) ( ) ,

in out in out in out
a u t A t dt= ∫  where ( )

0
( )in out

u t  is understood 

to represent the input (output) temporal mode shape. For single-mode operation, the longitudinal 
mode spacing limits the bandwidth, so micron-scale cavities can achieve a THz bandwidth, 
while memory lifetime is only limited by the internal decay rate of the oscillator. We use the 
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positive P-representation [22], in which all operators ( ) ( )

0
ˆˆ ˆ ˆ, , ,in out in out

A a a b  are formally replaced 

by c-numbers ( ) ( )

0
, , ,in out in out

A a a b . Using input-output theory [23], the dynamical equations are: 

( ) ( ( )) ( ) ( ) ( ) 2 ( ),

( ) ( ( )) ( ) ( ) ( ) 2 ( ).

in

in

a t i t a t g t b t A t

b t i t b t g t a t B t

κ δ κ

γ γ

= − + + +

= − + ∆ − +

ɺ

ɺ
                              (1) 

Here κ is the cavity damping, with detuning ( )tδ . The internal cavity-oscillator coupling is 

( )g t  (assumed variable), while the amplitude damping and detuning of the oscillator are , ( )tγ ∆  

respectively, with an oscillator noise term inB in the case of a finite temperature reservoir. 
   These equations can be applied to a range of experiments ranging from cold atoms to nano-
mechanical oscillators. Depending on the system, the oscillator-mode interaction could involve 
quantum non demolition (QND) [24-26], Raman or electromagnetically induced transparency 
(EIT) [3-5], controlled reversible inhomogeneous broadening (CRIB) [6-8,27], superconducting 
transmission lines and superconducting quantum interference devices (SQUID) [28-30], 
magnetic control with a two-level atom, nano-mechanical oscillator storage [31,32] or even 
intra-cavity Bose-Einstein condensation (BEC) devices [33].  

    With Raman coupling, ( )g t  represents a second Raman laser pulse shaped using an arbitrary 

waveform generator and an acousto-optic modulator. Cavity detunings ( )tδ  can be changed 

with piezo-electric actuators. Oscillator frequencies ( )t∆  are tunable with external bias fields or 

techniques to change mechanical tension in nano-mechanical devices.  
    The completeness of the positive P-representation representation allows us to treat any input 
quantum state or memory protocol. Since the equations are linear, the overall time-delayed 
input-output relationship must be given by: 

             
0 0

1 .out in R

M M
a a aη η= + −                                               (2) 

Here an amplitude retrieval efficiency 
M

η  is introduced for the time-delayed read-out, and R
a  

represents the overall effects of the loss reservoirs. For simplicity, all reservoirs are assumed   

here to be in the vacuum state. Hence, we can solve Eq. (1) to obtain 
0 0

/out in

M
a aη =  by 

integrating over the positive-P output field outA . This is valid since R
a  only acts on a zero-

temperature reservoir, and is equal to zero in the positive P-representation. 
    We will analyze the mode-matching conditions for two different dynamical models with fixed 

cavity damping κ . We consider an input signal with a peak amplitude at 
0

t t= , and an output 

retrieved after a time-interval T , i.e., with a peak at 
0

t T t= + .  In order to obtain dynamical 

mode matching we require an outgoing vacuum state for 
0

t t< . In the positive P-representation 

this translates to the simple requirement that 2 0out inA a Aκ= − = , so that 2 .inA aκ=  The 

two models use strategies of either variable coupling or variable detuning to switch on and off 
the coupling between the oscillator and the intra-cavity field. For simplicity, we treat the case of 

zero internal damping ( 1Tγ ≪ ) in the equations, while still including oscillator damping in the 

graphs to demonstrate that this effect can be made small if necessary. With no loss of generality, 

we consider units for which 1.κ =  

2.1 Variable coupling ( , 0δ ∆ = ) 

Here we propose that the cavity decay is fixed, and that ( )g t , the interaction of the cavity field 

with the oscillator, is switched. During the input stage, the relation 2inA aκ=  means that ( )a t  
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is given for any desired mode-shape ( ).inA t  This gives an expression for ( )g t , since from Eq. 

(1), with 0,γ → one has ( ) / .g t b a= − ɺ  Hence: 

             2 2[ ] / / ( ) / (2 ) 1.a gb a a a b a− = + =ɺɺ ɺ                                   (3) 

    In order to realize a time-symmetric input mode with 
0 0

sec ( ),a a h t t= − from Eq. (3) we see 

that the internal field amplitude must be 0( )

0 0
sec ( ).

t t
b a e h t t

−= −  The optimal shape of the 

cavity-oscillator coupling in time is therefore 
0

( ) / sec ( ).g t b a h t t= − = − −ɺ  This is independent 

of the amplitude 
0

a  which encodes the quantum information. Here the coupling is synchronized 

to 
0

t , which is the pulse arrival time. The quantum memory readout is obtained simply by time-

reversal after half the memory storage time has elapsed, so that 
0

( ) ( 2 ).g t g T t t= + −  The 

resulting output mode is also time-reversed and is unchanged apart from being inverted: 

0 0
2 sec ( ).outA a h T t t= − + −  A typical result is shown in Fig. 2(a), from integrating Eq. (1). 

 

 
 

Fig. 2. (a) Case 1: Cavity input (dashed) and output (solid) amplitudes. The dotted line gives the 

oscillator amplitude. (b) Case 2: The inset gives the detuning shapes in time: ( )t∆  and ( )tδ . 

Here 
0 0

5, 15, 1t T a= − = = .  

 

 To give an example, consider a trapped and cooled alkali-earth metal atomic vapor in a 100 mµ  

Fabry-Perot interferometer with a 25 mµ  mode waist. Strontium has metastable 3 3

0 2
,P P  states 

with decay rates of 
3

~ 6.1 10 ,Hz
−×  or less, which are used for atomic clocks. There is a 

3 3 3

1 0 2
,S P P→  transition (

1
~ .11 ,T sµ ) that is available for Raman switching, with no hyperfine 

structure if the abundant bosonic even isotope is used. The relevant signal and pump 

wavelengths are 679nm  and 707nm . We assume the cavity transmission is 0.01T = , giving a 

cavity decay lifetime of 67 ps∼ . The effective coupling strength of 3 3

1 0
S P→  is 

' /g Ng κΩ ∆≃ ∼ [10]. Here 
0

( )g g u r=
�

is the coupling parameter [20], which includes the 

normalized mode function ( )u r
�

; /EµΩ = ℏ  is the peak Rabi frequency of the Raman pump 

field E  that couples the two levels 3 3

1 2
S P→  with the atomic dipole element µ . According to 

the formula of [20], we need a maximum value of 73.5 10g Hz×∼ . Assume we have 310N ∼  

trapped atoms, with a Raman detuning of 10κ∆ ∼ , then 2.1κΩ ∼ . From the relation 
3 3 2

1 03 / (4 )T cε ω µ= ℏ , we obtain 290.29 10 C mµ −× ⋅∼  and therefore a peak intensity of 

2400 /I W mm∼ , which is an achievable pulse intensity. 
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2.2 Variable detuning  

In this approach, the coupling is changed by varying the detunings ( )t∆ and ( ).tδ We consider 

the simplest case with 1g κ= =  and a symmetric pulse 
0 0

sec ( ).a a h t t= −  To give a vacuum 

output during the writing phase we must have: ( ) / , ( ) / .i b a b i a a b aδ∆ = + = − −ɺ ɺ  We suppose  that 

1 2 ,b b ib= + so that 
2 2

1 2 1 2 2 1 1 1 2 2
( ) / / , [( ) ] / [( ) ] / .i a a b a b a b a b b b b i b a b b b bδ = − − + ∆ = + − + + +ɺ ɺ ɺ ɺɺ  

2 2

1 2 2 1 1 1 2 2
[( ) ] / [( ) ] / .b a b b b b i b a b b b b∆ = + − + + +ɺ ɺ ɺ ɺ  Since Im( ) Im( ) 0,δ∆ = =  we find that 

0( ) 2

1 0 0
( ) sec ( ),

t t
b a a a e h t t

−= − = − −ɺ  and hence that 0( )

2 0 0 0
sec ( ) tanh( ).

t t
b a e h t t t t

−= − −  Finally, 

to realize symmetric input and output pulse shapes, we obtain the required detunings of: 
0( )

0 0
tanh( ) sec ( ),

t t
e t t h t t
− −∆ = − + − 0( )

0
tanh( ).

t t
e t tδ −= −  

    After a controllable storage time, the interaction is switched back by time reversal of the 

detunings, so that 'δ δ→−  and '∆ → −∆ , as shown in Fig. 2(b).  

 
3. Loss and coupling noise 

A useful quantum memory must be immune to loss and noise. We include a white-noise 

component in the coupling constant, so that 
0

( ) ( ) ( )g t g t n tζ→ + , to simulate experimental 

fluctuations. Here we set ( ) ( ') ( ')t t t tζ ζ δ= −  to correspond to broadband noise. Figure 3 

shows how quantum memory fidelity F  in Case 1 during a storage time of 15T =  is affected 

for a range of noise levels, which corresponds to various losses: / 0,γ κ =  0.005,  0.01.  Here 

we have numerically solved Eq. (1) and integrated the mode overlap with the required sech 

mode function to obtain the value of 
M

η  from Eq. (2), averaging over 100 different noise 

realizations. F  is calculated based on our previous work [2] for coherent input states with mean 

photon number 20n = . Decreasing γ  increases the storage efficiency even further. 

    With coupling noise of 
0

0.05n =  and a residual loss / 0.01γ κ = , we also calculate how the 

memory fidelity varies with different relative storage times of 15, 20, 25, 30 . For coherent 

input states having a mean photon number 20n = , we find the average fidelities 

0.70, 0.58, 0.47, 0.39F = . The first two fidelities are both above the classical bound 

20
0.51cF =  required for a quantum memory. For arbitrary input states of up to two photons, the 

fidelities are 0.81, 0.76, 0.71, 0.67F = , which are all above the classical bound of 
2

0.5bF = . 

For these parameters, we are able to predict a quantum memory with both high fidelity and 
relatively long memory lifetime, even with internal loss and coupling parameter noise.  
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Fig. 3. The Fidelity (case 1 for coherent state with 20n = ) as a function of coupling noise with 

various loss ratios: / 0γ κ =  (solid), 0.005 (dashed) and 0.01 (dotted).  

 

4. Conclusion 

In conclusion, we propose a general protocol for a digital quantum memory, using a cavity-
oscillator model. We show that with temporal modulation of coupling and/or detuning, it is 
possible to mode-match to identical time-symmetric input and output pulses. This type of 
quantum memory promises to give both high quantum fidelity and long lifetimes. 
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